F(1)=-16t^2+45

Simple and best practice solution for F(1)=-16t^2+45 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(1)=-16t^2+45 equation:



(1)=-16F^2+45
We move all terms to the left:
(1)-(-16F^2+45)=0
We get rid of parentheses
16F^2-45+1=0
We add all the numbers together, and all the variables
16F^2-44=0
a = 16; b = 0; c = -44;
Δ = b2-4ac
Δ = 02-4·16·(-44)
Δ = 2816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2816}=\sqrt{256*11}=\sqrt{256}*\sqrt{11}=16\sqrt{11}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{11}}{2*16}=\frac{0-16\sqrt{11}}{32} =-\frac{16\sqrt{11}}{32} =-\frac{\sqrt{11}}{2} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{11}}{2*16}=\frac{0+16\sqrt{11}}{32} =\frac{16\sqrt{11}}{32} =\frac{\sqrt{11}}{2} $

See similar equations:

| –8y=–6−10y | | 6x-(X+9)=-3x+ | | 7=4x+22 | | 5x+⁵=5⁷ | | (-1/3)y-6=-18 | | x+5=180-108+x-5 | | -5/8x-7/24x+1/3x=-70 | | 81+1x=105 | | 4x+4=–44 | | -4(7x-9)=-28x+36 | | 3=-7+b/6 | | 13x+2=10x+17 | | 2x+7-6x=19 | | 9x+12=8x+1 | | 218=92-v | | 10+3x=26−5x | | 2(x-2)^2+3=19 | | 7-5u=42 | | 9x=6{x+4} | | 3x-45+2x=24+2x | | 3=x+10= | | 12+8y=240 | | -(2-b)=4b-17 | | M2+m6=180 | | (1/8)r=9 | | 5y−24+3y=0 | | -10a+9=12a-2 | | 3y+3=-30 | | 30-11x+15=0 | | (-4x-26)=x=-45 | | -20.4=w/6-1.2 | | (6y-5)+(4y+10)=180 |

Equations solver categories